# How To Combine Like Terms

Like Terms are those terms that are containing identical variables that are raised to identical power(s).

For example, the terms −8x and 3x are “like terms” here, just like 0.5xy2 and 8xy2 are “like terms.”

Onsego

## Online GED Classes

### Get a GED Diploma quickly. It doesn’t matter when you left school.

##### Bite-size video lessons | Practice tests with explanation | 6 Bonuses

1. Combine like terms.

$$14x^{3} - 10x^{3}$$
A.
B.
C.
D.

Question 1 of 2

2. Combine like terms.

$$9 - 17m - m + 7$$
A.
B.
C.
D.

Question 2 of 2

This lesson is provided by Onsego GED Prep.

Next lesson: Algebraic expressions
This lesson is a part of our GED Math Study Guide.

### Video Transcription

The concepts of the distributive property may also help us understand one fundamental idea in algebra. This is that we can add and subtract quantities such as 12x and 3x in the same way as the numbers 12 and 3.

Let’s take a look at an example and see how we can do this.

From earlier studies about the distributive property and also from studying and using the commutative property, we know that x(3 + 12) is exactly the same as

3(x) + 12(x).

This: x(15)

So the answer is: 3x + 12x = 15x

So we call groups of terms which are consisting of coefficients that are multiplied by identical variables “like terms”.

The concept of “combining like terms” is often used in GED Math questions.

Look at the following table that’s showing a few different sets, or groups, of these “like terms”:

 Groups of Like Terms 3x, 7x, −8x, −0.5x −1.1y, −4y, −8y 12t, 25t, 100t, 1t 4ab, −8ab, 2ab

Again, Like Terms are terms that contain identical variables that are raised to the identical power(s).

The concept of “combining like terms” is used frequently in the GED Math exam.

And the fundamental algebraic concept of “Distributive Property” tells us that may add and subtract quantities like 12y and 3y in the same way as 12 and 3.

Last Updated on February 14, 2024.